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The Unconditionally Stable Pseudospectral
Time-Domain (PSTD) Method

Gang Zhao, Student Member, |EEE, and Qing H. Liu, Senior Member, IEEE

Abstract—This letter presents a new time-domain method for
Maxwell’s equations, in which the unconditionally stable tech-
niques, the alternating direction implicit (ADI) and the split-step
(SS) schemes, are developed for the pseudospectral time-domain
(PSTD) algorithm to maintain stability while achieving higher
accur acy and efficiency over the FDTD method. The multidomain
strategy is employed to allow for a flexible treatment of internal
inhomogeneities. Numerical results demonstrate the uncondi-
tional stability and the second-order accuracy for both ADI- and
SS-PSTD algorithms.

Index Terms—Alternating direction implicit (ADI) technique,
FDTD, PSTD, split-step scheme.

I. INTRODUCTION

T ISWELL KNOWN that the traditional FDTD method is

subject to the CFL stability condition due to the use of an
explicit central -difference scheme. This condition becomes par-
ticularly restrictive in most RF circuit applications where the
electrical length of the target geometry is much smaller than the
wavelength. To overcome this restriction, the Alternating Di-
rection Implicit (ADI) [1], [2] and Split-Step (SS) [3] FDTD
methods have been proposed, and the unconditional stability has
been demonstrated both theoretically and numerically.

Meanwhile, extensive research activities have been devoted
to the improvement of efficiency and accuracy of the FDTD
method. Among such efforts, the Pseudospectral Time-Domain
(PSTD) method, with itslow sampling density and higher order
accuracy [4], [5], has been demonstrated to greatly outperform
the FDTD method. With a multidomain scheme that dividesthe
whole computational domain into a series of subdomains natu-
rally conformal to the problem geometry, the Chebyshev PSTD
method can deal with curved objects and strongly inhomoge-
neous mediawith agreat flexibility. Nevertheless, it also suffers
from the CFL stability condition because of the explicit time-in-
tegration scheme. Thislimitsthe PSTD method from further ap-
plications to RF circuit problems.

In this work, based on the concepts of ADI- and SS-FDTD
methods as well as our previously developed 3-D PSTD
methods [4], [6], we derive the unconditionally stable PSTD
algorithm for single and multiple domains. We demonstrate
that the implicit time-integration scheme can be applied to the
PSTD method and make it free of the CFL stability condition.
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Il. THEORY

According to Lee and Fornberg [7], the ADI- and SS-FDTD
methods can be generalized into a single mathematical form.
The 3-D Maxwell’ s equations are written as
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Using the standard Crank-Nicol son approximation, (2) can be
solved as
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Following Lee and Fornberg [7], this can be reduced to
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A. Alternating-Direction Implicit (ADI) Method

Equation (4) suggests that Maxwell’ s equationsin (2) can be
solved by two separate stages. For example [7]

1. <1 — %A) wts = <1 + %B) u'';

2. <1 - %B) Wt = <1 + %A) Wt (5)

or equivaently
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Using central differencing to evaluatethe spatial derivatives, one
findsthat (6) isexactly equivalent tothe ADI-FDTD scheme[2].
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Another important property of the ADI-FDTD method is that
it maintains the second-order accuracy as demonstrated in (4).
To verify this, one can multiply thefirst equation of (5) by (1 +
(At/2)A) and the second one by (1 — (At/2)A), and then (4)
can be derived.

B. Split-Sep (SS) Method
Equation (4) can also be split into two stages
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which becomes the first-order split-step method [3], [7].
The advantage of this scheme is that the origina (2) can be
divided into two independent subproblems: (du/dt) = 2Au
and (8u/dt) = 2Bu. The first-order SS scheme solves one
subproblem at each half step.

If one multiplies the first equation of (7) by (1 + (At/2)B)
and the second one by (1 — (At/2)A), the resulting equation is
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Therefore, only in case that AB = BA, the SS1 scheme in
(7) can achieve the second-order accuracy. In generd, it is a
first-order time-stepping strategy. Higher order accuracy can
be achieved by repeatedly advancing (du/dt) = 2Au and
(0u/dt) = 2Bu by more time divisions within a single step.
For example, the second-order SS method splits one step At
into three stages with timeincrements {At/4, At/2, At/4}.

Note that due to the inherent symmetry of Maxwell’s equa-
tionsin (1), each subproblem (8u/dt) = 2Au and (Gu/dt) =
2Bu can be further written into three pairs of mutually uncou-
pled 1-D equations
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Equation (8) demonstrates that the 3-D electromagnetic
problem can be greatly simplified by solving three pairs of 1-D
equations at each stage [3].

C. CFL-Free Pseudospectral Time-Domain Method

Since the split-step method splits the 3-D equation (1) into
three pairs of 1-D equations at each stage, the development of
SS-PSTD agorithm only needs to focus on the evaluation of
spatial derivatives for one single direction, for example, the =

coordinate. Then, the same algorithm can be applied to the other
two directions to solve the true 3-D problem.

For PSTD methods [4], [6] the approximation of spatial
derivatives can be generalized as
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or in amatrix form

of
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where the matrix D isof size N x N, and N isthe number of
sampling cellsinthex direction. The D matrix isdetermined by
the distribution of sampling points. The Fourier PSTD method
uses uniformly distributed sampling cells; while the Chebyshev
PSTD algorithm is based on the Chebyshev-Gauss-L obatto col-
location points.

1) Implicit Time-Integration Scheme: A par of 1-D
equations {(0E./dt) = (1/e)(0H,/dx);(8H,/0t) =
(1/u)(OE./dz)} can be normaized as {(OE./0t) =
v(0H,/0x); (OH,/0t) = v(0E./0x)}, where v is the wave
speed and H is normalized by multiplying with \/x/e. Thus,
the implicit scheme can be applied to this 1-D equation for one
half step

(10)
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For the ADI method, although it involves both operators A and
B at each stage, only one matrix operates at the current step and
the other operates at the previous step (5). For example, at the
first half step, the ADI scheme solves for
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Obviously, one can evaluate Bu™ first, and then the rest can
still be divided into three pairs of 1-D equationslike (8). There-
fore, asimilar implicit strategy as (11) can be applied to solving
each pair of 1-D equationsindependently with a pseudospectral
method.

2) Multidomain ADI- and SS-PSTD Method: For the mul-
tidomain scheme, a special step called subdomain patching is
needed to exchange information between the individual subdo-
mainsto match the boundary conditionsat their interfaces. Inthe
previouswork [6], this step is achieved explicitly by forcing the
tangentia field components to be continuous after the time-in-
tegration, which may result in adegradation of accuracy. In this
work, we introduce an implicit subdomain-patching technique
proposed by Liu [8], whichimplementsthe boundary conditions
as part of the system matrix, and thereby maintains the uncon-
ditional stability as well asthe high accuracy of pseudospectral
method.
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Fig. 1. Two-region problem with inhomogeneous medium, and field dis-
tributionaty = 0 (¢ =2 m, Ay = 3.798 m, Ay = 3.43 m).

Consider two adjacent 1-D regions subject to their individual
system equations:
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where P and @@ are 2N x 2N matrices given in (11), v =

[Hy, E.]* and the subscripts denote the corresponding subdo-
mains. If one combines the two systems as awhole
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the boundary condition can be implemented through the modi-
fication of the matrix C and vector b.

For example, if 5(2NV) and b(3N + 1) are thetangential elec-
trical field components at theinterface belonging to region 1 and
2, respectively, we can modify the 2/Vth row of C asfollows:

1, i =2N;
C(ZN,i)I{—l, t=3N+1;
0, otherwise.

On theright hand side, correspondingly, b(2NV) is set to be zero.
Obviously, this represents the boundary condition that the tan-
gential components of electrical fieldsare continuous. The same
strategy is also applicable to field components at the PEC or
PMC interfaces.

I1l. NUMERICAL RESULTS

Our first example presents a 2-D TM_ problem with two
square regions with ¢ = 2 m bounded with perfect conductors
and filled with air and a medium with ¢,, = 1.226, asshown in
Fig. 1. The coordinate systemisset asx from —1to 3 m, and y
from —1 to 1 m. The multidomain ADI-PSTD method isimple-
mented to cal culate the distribution of fields and the results are
compared to the analytical solutions as shown in Fig. 1. Fig. 2
demonstrates the simulation error as a function of the size of
time step, and clearly indicates that the ADI-PSTD agorithmis
CFL-free and of the second-order accuracy.

In addition, we have implemented the 3-D SS-PSTD algo-
rithm for asingle computational domain. Fig. 3 plots the simu-
lation error of the 3-D first-order SS-PSTD algorithm for a peri-
odical cube structure with size length of = m. It isworth noting
that the second-order accuracy is observed for the first-order
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Fig. 2. Second-order accuracy of the 2-D multidomain ADI-PSTD method for
(N = 24) and (N = 8), where At .x—psTp IS the maximal allowed time
step of the explicit scheme.
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Fig. 3. Accuracy of the 3-D SS-PSTD algorithm for a periodic cube structure
(e =7mm A =1.814m)with N =16 and N = 8 cellsin each direction.

SS-PSTD scheme because the system matrices A and B are
commutable.

IV. CONCLUSION

In this work, the multidomain Alternating Direction Implicit
and Split-Step PSTD algorithms are proposed and developed
for inhomogeneous media and perfect conductors. The un-
conditional stability of the algorithms has been numerically
demonstrated. The simulation results are validated by analyt-
ical solutions, and confirm the second-order accuracy in time
integration.
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