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The Unconditionally Stable Pseudospectral
Time-Domain (PSTD) Method
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Abstract—This letter presents a new time-domain method for
Maxwell’s equations, in which the unconditionally stable tech-
niques, the alternating direction implicit (ADI) and the split-step
(SS) schemes, are developed for the pseudospectral time-domain
(PSTD) algorithm to maintain stability while achieving higher
accuracy and efficiency over the FDTD method. The multidomain
strategy is employed to allow for a flexible treatment of internal
inhomogeneities. Numerical results demonstrate the uncondi-
tional stability and the second-order accuracy for both ADI- and
SS-PSTD algorithms.

Index Terms—Alternating direction implicit (ADI) technique,
FDTD, PSTD, split-step scheme.

I. INTRODUCTION

I T IS WELL KNOWN that the traditional FDTD method is
subject to the CFL stability condition due to the use of an

explicit central-difference scheme. This condition becomes par-
ticularly restrictive in most RF circuit applications where the
electrical length of the target geometry is much smaller than the
wavelength. To overcome this restriction, the Alternating Di-
rection Implicit (ADI) [1], [2] and Split-Step (SS) [3] FDTD
methods have been proposed, and the unconditional stability has
been demonstrated both theoretically and numerically.

Meanwhile, extensive research activities have been devoted
to the improvement of efficiency and accuracy of the FDTD
method. Among such efforts, the Pseudospectral Time-Domain
(PSTD) method, with its low sampling density and higher order
accuracy [4], [5], has been demonstrated to greatly outperform
the FDTD method. With a multidomain scheme that divides the
whole computational domain into a series of subdomains natu-
rally conformal to the problem geometry, the Chebyshev PSTD
method can deal with curved objects and strongly inhomoge-
neous media with a great flexibility. Nevertheless, it also suffers
from the CFL stability condition because of the explicit time-in-
tegration scheme. This limits the PSTD method from further ap-
plications to RF circuit problems.

In this work, based on the concepts of ADI- and SS-FDTD
methods as well as our previously developed 3-D PSTD
methods [4], [6], we derive the unconditionally stable PSTD
algorithm for single and multiple domains. We demonstrate
that the implicit time-integration scheme can be applied to the
PSTD method and make it free of the CFL stability condition.
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II. THEORY

According to Lee and Fornberg [7], the ADI- and SS-FDTD
methods can be generalized into a single mathematical form.
The 3-D Maxwell’s equations are written as

(1)

or more compactly

(2)

Using the standard Crank-Nicolson approximation, (2) can be
solved as

(3)

Following Lee and Fornberg [7], this can be reduced to

(4)

A. Alternating-Direction Implicit (ADI) Method

Equation (4) suggests that Maxwell’s equations in (2) can be
solved by two separate stages. For example [7]

(5)

or equivalently

(6)

Using central differencing to evaluate the spatial derivatives, one
finds that (6) is exactly equivalent to the ADI-FDTD scheme [2].
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Another important property of the ADI-FDTD method is that
it maintains the second-order accuracy as demonstrated in (4).
To verify this, one can multiply the first equation of (5) by

and the second one by , and then (4)
can be derived.

B. Split-Step (SS) Method

Equation (4) can also be split into two stages

(7)

which becomes the first-order split-step method [3], [7].
The advantage of this scheme is that the original (2) can be
divided into two independent subproblems:
and . The first-order SS scheme solves one
subproblem at each half step.

If one multiplies the first equation of (7) by
and the second one by , the resulting equation is

Therefore, only in case that , the SS1 scheme in
(7) can achieve the second-order accuracy. In general, it is a
first-order time-stepping strategy. Higher order accuracy can
be achieved by repeatedly advancing and

by more time divisions within a single step.
For example, the second-order SS method splits one step
into three stages with time increments .

Note that due to the inherent symmetry of Maxwell’s equa-
tions in (1), each subproblem and

can be further written into three pairs of mutually uncou-
pled 1-D equations

(8)

Equation (8) demonstrates that the 3-D electromagnetic
problem can be greatly simplified by solving three pairs of 1-D
equations at each stage [3].

C. CFL-Free Pseudospectral Time-Domain Method

Since the split-step method splits the 3-D equation (1) into
three pairs of 1-D equations at each stage, the development of
SS-PSTD algorithm only needs to focus on the evaluation of
spatial derivatives for one single direction, for example, the

coordinate. Then, the same algorithm can be applied to the other
two directions to solve the true 3-D problem.

For PSTD methods [4], [6] the approximation of spatial
derivatives can be generalized as

(9)

or in a matrix form

(10)

where the matrix is of size , and is the number of
sampling cells in the direction. The matrix is determined by
the distribution of sampling points. The Fourier PSTD method
uses uniformly distributed sampling cells; while the Chebyshev
PSTD algorithm is based on the Chebyshev-Gauss-Lobatto col-
location points.

1) Implicit Time-Integration Scheme: A pair of 1-D
equations

can be normalized as
, where is the wave

speed and is normalized by multiplying with . Thus,
the implicit scheme can be applied to this 1-D equation for one
half step

(11)

For the ADI method, although it involves both operators and
at each stage, only one matrix operates at the current step and

the other operates at the previous step (5). For example, at the
first half step, the ADI scheme solves for

Obviously, one can evaluate first, and then the rest can
still be divided into three pairs of 1-D equations like (8). There-
fore, a similar implicit strategy as (11) can be applied to solving
each pair of 1-D equations independently with a pseudospectral
method.

2) Multidomain ADI- and SS-PSTD Method: For the mul-
tidomain scheme, a special step called subdomain patching is
needed to exchange information between the individual subdo-
mains to match the boundary conditions at their interfaces. In the
previous work [6], this step is achieved explicitly by forcing the
tangential field components to be continuous after the time-in-
tegration, which may result in a degradation of accuracy. In this
work, we introduce an implicit subdomain-patching technique
proposed by Liu [8], which implements the boundary conditions
as part of the system matrix, and thereby maintains the uncon-
ditional stability as well as the high accuracy of pseudospectral
method.
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Fig. 1. Two-region problem with inhomogeneous medium, and field dis-
tribution at y = 0 (a = 2 m, � = 3:798 m, � = 3:43 m).

Consider two adjacent 1-D regions subject to their individual
system equations:

where and are matrices given in (11),
and the subscripts denote the corresponding subdo-

mains. If one combines the two systems as a whole

where

the boundary condition can be implemented through the modi-
fication of the matrix and vector .

For example, if and are the tangential elec-
trical field components at the interface belonging to region 1 and
2, respectively, we can modify the th row of C as follows:

.

On the right hand side, correspondingly, is set to be zero.
Obviously, this represents the boundary condition that the tan-
gential components of electrical fields are continuous. The same
strategy is also applicable to field components at the PEC or
PMC interfaces.

III. NUMERICAL RESULTS

Our first example presents a 2-D TM problem with two
square regions with m bounded with perfect conductors
and filled with air and a medium with , as shown in
Fig. 1. The coordinate system is set as from 1 to 3 m, and
from to 1 m. The multidomain ADI-PSTD method is imple-
mented to calculate the distribution of fields and the results are
compared to the analytical solutions as shown in Fig. 1. Fig. 2
demonstrates the simulation error as a function of the size of
time step, and clearly indicates that the ADI-PSTD algorithm is
CFL-free and of the second-order accuracy.

In addition, we have implemented the 3-D SS-PSTD algo-
rithm for a single computational domain. Fig. 3 plots the simu-
lation error of the 3-D first-order SS-PSTD algorithm for a peri-
odical cube structure with size length of m. It is worth noting
that the second-order accuracy is observed for the first-order

Fig. 2. Second-order accuracy of the 2-D multidomain ADI-PSTD method for
(N = 24) and (N = 8), where �t is the maximal allowed time
step of the explicit scheme.

Fig. 3. Accuracy of the 3-D SS-PSTD algorithm for a periodic cube structure
(a = � m, � = 1:814 m) with N = 16 and N = 8 cells in each direction.

SS-PSTD scheme because the system matrices and are
commutable.

IV. CONCLUSION

In this work, the multidomain Alternating Direction Implicit
and Split-Step PSTD algorithms are proposed and developed
for inhomogeneous media and perfect conductors. The un-
conditional stability of the algorithms has been numerically
demonstrated. The simulation results are validated by analyt-
ical solutions, and confirm the second-order accuracy in time
integration.
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